Recombinant Materials: Materials for the post-oil age

J. Carlos Rodríguez Cabello
G.I.R Bioforge. Uva-Ciber-BBN

Universidad de Valladolid
Valladolid (SPAIN)
Recombinamers: Recombinant Protein Polymers
Some Advantages of Recombinant Protein Polymers:

- They are able to incorporate any simple or complex function present in natural proteins.

- They are able to show any other amino-acid-based functionality of scientific or technological interest that evolution has not been selected in natural proteins.

- Absolute control in the polymer composition. That includes total absence of polydispersity and randomness.

- Huge number of possible compositions.

- They can be really complex in sequence, while an increase in complexity does not imply an increase in production costs.

- They are environmentally clean from production to waste.

- They are produced exclusively from biomass (do not require oil-derived materials).

...
Recombinant Technology:

- Direct Functionality given by (Bio)active peptide domains
- Functionality given by Nanometric design and control of Macromolecular composition

Holistic functionality by designing precise molecular architectures

Selected Examples:

- Injectable Hydrogels for Regenerative Medicine
- Smart Surfaces for Cell/Cell-sheet Harvesting
- Hierarchical morphogenesis
(VPGIG): Elastin pentapeptide.
(VPGKG): Elastin like pentapeptide modified to include the amino-acid K for cross-linking purposes.

(Mechanical Properties)
Extreme Biocompatibility
Smart and Self-assembling behaviour

Specific and Efficient Cell Attachment functionality

Adequate bioresobability and positive “Side Effects”

Regenerative Medicine: Material Designs

(VPGIG)_2 (VPGKG) (VPGIG)_2–(BIOACTIVE DOMAIN) (VPGIG)_2 (VPGKG) (VPGIG)_2 (VGVAPG)_3

(AXVGRGDSPASS): RGD loop of human fibronectin.
(QAASIKVAV): Neurite outgrowth peptide
(GTPGPQGIAGQRGVV): Osteoblast cell attachment
(EEIQIGHIPREDVYHLYP): Endotelial cell attachment
(DPGYIGSR): Laminin-derived non integrin-dependent cell attachment
(DDDEEKFLRRIGRG): Hydroxyapatite binding domain

(VGVAPG): Human elastin bioactive hexapeptide. This is target of ECM proteases and, as released, promotes cell movement, proliferation and angiogenesis.
Cell Therapy: Injectable systems

37°C
Cell Therapy: Injectable systems

HFF-1

<table>
<thead>
<tr>
<th>Time</th>
<th>Images</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 day</td>
<td></td>
</tr>
<tr>
<td>15 day</td>
<td></td>
</tr>
<tr>
<td>35 day</td>
<td></td>
</tr>
<tr>
<td>60 day</td>
<td></td>
</tr>
</tbody>
</table>

MCS

- ![Image](MCS_images)

HUV ECs

- ![Image](HUV_ECs_images)

HFF-1

- ![Image](HFF-1_images)
Bioactive Stents
Bioactive Stents
Cell Therapy: Injectable systems
Amphiphilic multiblocks

<table>
<thead>
<tr>
<th>E50</th>
<th>I60</th>
<th>E50</th>
<th>I60</th>
</tr>
</thead>
<tbody>
<tr>
<td>E50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hydrophilic block

T-Driven Hydrophobic block

BIOFORGE
3D Computed Tomography (CT)

Macroscopic Observation

Left Knees Hydrogel
Right Knees Hydrogel with MSC

Nuclear Magnetic Resonance (NMR)
-3D SPGR-

3D Computed Tomography (CT)
Full recovery of hyaline cartilage

Formation of ossification centers

Isogeneous groups of chondrocytes

Endochondral ossification and isogeneous groups of chondrocytes in the injured zone
Quantitative Analysis

Histological scoring of cartilage repair according to modified Wakitani score.

<table>
<thead>
<tr>
<th>↓ CATEGORY</th>
<th># RABBIT</th>
<th>Hydrogel (left knees)</th>
<th>Hydrogel with MSC (right knees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CELL MORPHOLOGY (0-4) *</td>
<td></td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
</tr>
<tr>
<td>MATRIX-STAINING (METACHROMASIA) (0-3) *</td>
<td></td>
<td>1 2 1 1 2 2</td>
<td>3 3 2 3 3 2</td>
</tr>
<tr>
<td>SURFACE REGULARITY (0-3) *</td>
<td></td>
<td>2 2 2 1 2 2</td>
<td>3 3 2 2 3 2</td>
</tr>
<tr>
<td>THICKNESS OF CARTILAGE (0-3) *</td>
<td></td>
<td>1 1 1 0 1 1</td>
<td>3 3 3 3 3 2</td>
</tr>
<tr>
<td>INTEGRATION WITH HOST ADJACENT CARTILAGE (0-2)</td>
<td></td>
<td>2 2 1 0 1 1</td>
<td>2 2 1 2 2 1</td>
</tr>
<tr>
<td>TOTAL (0-15)</td>
<td></td>
<td>8 9 6 3 8 8</td>
<td>15 15 12 13 15 11</td>
</tr>
<tr>
<td>AVERAGE (0-15)</td>
<td></td>
<td>5.6</td>
<td>13.5</td>
</tr>
</tbody>
</table>

* Significant differences in the medians according to Kruskal-Wallis analysis.

Immunohistochemistry with mAb against a human mitochondria marker and DAPI stain.
Thermosensitive ELR Surfaces for Cell Harvesting

$37^\circ C$
$75.8^\circ \pm 0.7^\circ$
$65.5^\circ \pm 0.9^\circ$
$T < T_t$
Molecular Designs

<table>
<thead>
<tr>
<th>RECOMBINAMER</th>
<th>AMINO-ACID SEQUENCE + SCHEMATIC CARTOON OF THE MOLECULE</th>
<th>T<sub>c</sub>/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3K-RGD (1)</td>
<td>MGKKKP-(VPGVG)<sub>14</sub>[(VPGIG)<sub>10</sub>AVTGRGDSPASS(VPGIG)<sub>10</sub>l<sub>2</sub>(VPGVG)<sub>14</sub>V</td>
<td>24.2</td>
</tr>
<tr>
<td>3K-RDG (2)</td>
<td>MGKKKP-(VPGVG)<sub>14</sub>[(VPGIG)<sub>10</sub>AVTGRDGSPASS(VPGIG)<sub>10</sub>l<sub>2</sub>(VPGVG)<sub>14</sub>V</td>
<td>23.5</td>
</tr>
<tr>
<td>3K-V84 (3)</td>
<td>MGKKKP-(VPGVG)<sub>84</sub>V</td>
<td>29.4</td>
</tr>
<tr>
<td>N-RGD (4)</td>
<td>MESLLP-(VPGVG)<sub>14</sub>[(VPGIG)<sub>10</sub>AVTGRGDSPASS(VPGIG)<sub>10</sub>l<sub>2</sub>(VPGVG)<sub>14</sub>V</td>
<td>23.9</td>
</tr>
<tr>
<td>RGD+24K (5)</td>
<td>MESLLP[(VPGIG)<sub>2</sub>(VPGKG)(VPGIG)<sub>2</sub>AVTGRGDSPASS(VPGIG)<sub>2</sub>(VPGKG)(VPGIG)<sub>2</sub>l<sub>6</sub>V</td>
<td>32.2</td>
</tr>
<tr>
<td>3K-RGD3 (6)</td>
<td>MGKKKP-[(VPGIG)<sub>10</sub>AVTGRGDSPASS(VPGIG)<sub>10</sub>]<sub>3</sub>V</td>
<td>23.0</td>
</tr>
</tbody>
</table>
15 min at 10 °C

Graph showing % Adherent cells against Incubation Time (min) with conditions 37°C and 10°C. Graph indicates the effect of RGD on adherent cells across different temperatures and times.

Images show cell cultures at 37°C and 10°C with and without RGD.
Hierarchical Morphogenesis of a hybrid peptide amphiphilic/ELR system
Tube growing
ACKNOWLEDGEMENTS

Layered hierarchical structured scaffolds with injectable self setting bioactive gel for clinical bone tissue repair (FP7-NMP-2010-2.2.3)

Tissue in Host Engineering Guided Regeneration of Arterial Intimal Layer
FP7-Health-2011-278557

Development of biomaterial-based delivery systems for ischemic conditions; an integrated pan-European approach. FP7-People-2012-ITN

Engineering responsive and biomimetic hydrogels for biomedical therapeutic and diagnostic applications. MSCA-ITN-2014-ETN

Tailored elastin-like recombinamers as advanced systems for cell therapies in Diabetes Mellitus: a synthetic biology approach towards a bioeffective and immunoisolated biosimilar islet/cell niche. MMP-2014-642687
THANK YOU

ACKNOWLEDGEMENTS

Genoma España
Junta de Castilla y León
Universidad de Valladolid
ciber-bbn

Technical Proteins Nanobiotechnology
EU Flag