Storage – Armazenamento de Energia

Sessão Técnica do Ciclo dedicado à Eficiência Energética

You are never too young to lead and we are never too old to learn

Kofi Annan

The energy system back in the day

From centralized, unidirectional grid to distributed and bidirectional in Decentralized Energy Systems

What is BESS?

Modular, scalable arrays of proven technologies integrated at utility and industrial scale.

Low voltage and medium voltage components

Fire detection and extinguishing system

Intelligence:
Array Controls &
Application Software

Connection:
Electrical & Other
Balance of Plant

SIEMENS

Overall BESS System architecture

Key Applications

Applications and use cases

Use cases		Applications
	Electricity supply for microgrids/ isolated grids	 Black start Ramping control Time shifting Capacity firming Diesel offset Frequency regulation (Primary Control Reserve) Peak load management
	Electricity supply for industry	 Black start Backup energy Diesel offset Peak load management
	Integration of renewable energy	Ramping controlTime shiftingCapacity firming
	T&D upgrade deferral	Peak load managementRamping controlFrequency regulation

Practical case for PV+ Storage (Time shifting + Ramping Control)

Creating Self-Sustainable Islands with Microgrid Control System

<u>Challenge</u> - accelerate the energy and digital transition in Azores and Madeira

Solution

- 24 MW battery power plant
- 16 MWh of energy storage capacity
- Inverters, batteries, MV/LV, P&C and transformers
- Spectrum PowerTM Microgrid Management System

Main Pillars

- Sustainability leverage renewable penetration, reduction of fossil fuel consumption and CO2
- Digitalization Siemens Microgrid Management System allows optimal operation of the Island

Terceira Island, Portugal

Energy Storage and Microgrid Management System for Island towards sustainability

Customer environment

Grid with high complexity:

- Isolated grid (electrical island)
- Network size (tip ≈ 33 MW)
- · Very diverse energy mix including fuel / diesel, water, wind, solar, geothermal and waste burning.

Use case

- · Resiliency and energy independence · Operation optimization
- · Prediction of consumption and energy production
- Energy cost reduction

- Renewable integration
- Fossil fuel consumption reduction

Component

Siemens Storage System Spectrum PowerTM Microgrid Management System

Features

- Real-time monitoring
- Load and generation forecasts
- Renewable production forecast based on weather forecast
- Calculation of the optimal operation strategy of the Micro-Network
- · Economic mode minimize cost of production
- Ecological mode minimize emission
- Calculation of required reactive power reserve
- Load shedding

Sustainability KPIs

~67%

Increased share of renewables

~10,736 t

Reduction of fuel oil consumption per year

>33,883 t

decrease of CO2 emissions per year

Note: These values include the expansion of a 6 MW geothermal power plant

Contact details

Marco Furtado

Area Sales Professional SI Sales Rua Irmãos Siemens, 1 2720-093 Amadora, Portugal

Mobile: +351 91 696 0878

E-mail: marco.furtado@siemens.com