Deep Sea Mining: State-of-the-Art and Future Perspectives

Dr. Jörg Benndorf
Lisabon, September 2014
Agenda

• The demand for minerals - key drivers
• Deep sea mineral resources
• Deep sea mining technology: state-of-the-art and gaps
• Seabed vs. land-based mining
• Conclusions and potential future scenarios
Deep Sea Mining – Key Drivers

Trends for Global Refined Copper Consumption

Source: A. Gonzalez, March 2012
Deep Sea Mining – Key Drivers

Industry Head Grade Trends (Weighted Paid Copper)

Source: Brook Hunt
Deep Sea Mining – Key Drivers
Deep Sea Mining – Key Drivers

Source: Critical raw materials for the EU, European Commission, 2010
Are there alternative sources to secure Europe's supply with raw materials?
Jules Verne (1870):

“20,000 leagues under the sea”:

“In the depths of the oceans there are mines of zinc, iron, silver and gold that would be quite easy to exploit”
Deep Sea Mining – Mineral Resources

- Cobalt-rich crusts on seamounts

- Slopes of submarine mountains (seamounts) and volcanoes at depths of 800 – 2500 m in the Pacific Ocean are often covered by a crust of cobalt, titanium, cerium, manganese and nickel.

- These deposits also were precipitated from seawater, possibly under the influence of bacteria.

- Hydrothermal activity is a possibility for the origin of the metals.

- The formation times are probably tens of millions of years.
Deep Sea Mining – Mineral Resources

• Polymetallic Nodules

• formed over millions of years
• minerals precipitated from the water around sea-floor detritus (such as shark teeth, whale ear bones, and pebbles)
• contain valuable metals iron, manganese, copper, cobalt and nickel and REE.
• at depths greater than 4,000 metres.
• potato-sized

Foto from Ian Wright. 'Marine minerals - Nodules, crusts and vents', Te Ara - the Encyclopedia of New Zealand, updated 21-Sep-12
Polymetallic Nodules Exploration Areas in the Clarion-Clipperton Fracture Zone
Areas under contract and areas reserved for the International Seabed Authority

Contract area or contract approved as of 28 February 2013

Marawa Research and Exploration Ltd (Kiribati)
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR; Germany)
China Ocean Mineral Resources Research and Development Association (COMRA; China)
Deep Ocean Resources Development Company (DORD; Japan)
G-TEC Minerals Resources NV (GSR; Belgium)
Government of the Republic of Korea

Reserved area*
Area of particular environmental interest (APEI)**
Exclusive Economic Zones (VLIZ, 2011)

* In the case of polymetallic nodules, the so-called parallel system provides that each application for exploration by a developed State must cover two parts of "equal estimated commercial value". One part is allocated to the applicant and the other is to become the reserved area, which is set aside for the conduct of activities by the Authority or developing States.
** In July 2012, the Authority adopted an environmental management plan for the Clarion-Clipperton Zone to be implemented on a provisional basis over an initial three-year period. The plan includes the designation of a network of areas of particular environmental interest (ISBA/18/C(22)).

Deep Sea Mining – Mineral Resources

• **Sea Floor Massive Sulphides**

Aqueous fluids, seeping through the seabed are heated by the influence of submarine magmatism. These fluids are enriched in minerals by leaching them out. They typically contain iron, copper, zinc, sulphur, and possible gold and silver. Via faults these hydrothermal fluids can reach the surface of the seabed. There they cool, leading to deposits of copper and zinc sulphides.
Global distribution of seafloor hydrothermal systems and related mineral deposits.
Challenge the future

Deep Sea Mining – Mineral Resources

Locations of current prospects: Example Solwara 1

Seabed poly-metallic Sulphides

Only example: Solwara 1

Indicated Mineral Resource: 1,030kt @ 7.2% Cu, 5.0 g/t Au, 23 g/t Ag, 0.4% Zn

Inferred Mineral Resource: 1,540kt @ 8.1% Cu, 6.4 g/t Au, 34 g/t Ag, 0.9% Zn

Reference: http://www.nautilusminerals.com
Deep Sea Mining – Mineral Resources

Who belong Resources to?

 An **exclusive economic zone (EEZ)** is a 200-nautical-mile sea area measured from the low-water baseline (the level reached by the sea at low tide) of a state’s coast or of an inhabitable island under its sovereignty. Under UNCLOS, a state has sovereign jurisdiction over the area’s living and non-living marine resources.

 International Seabed Authority (ISA) supervises mining outside the EEZ’s.
EEZ of Portugal

Deep Sea Mining – Extraction

Source: Royal IHC Merwede, 2013
Deep Sea Mining – Extraction

- Extraction Nodules

- Collectors as suggested by Aker Wirth in Cooperation with BGR (2009-2012)
Deep Sea Mining – Extraction

- Extraction SMS

- Currently assembled by Company SMD, Newcastle, UK
- Three machines:
 - Auxiliary Cutter
 - Bulk cutter
 - Collector

Source: Mining Magazine 2014
Animation from NAUTILUS: Seabed Extraction System

Source: www.nautilusminerals.com/
Deep Sea Mining – Extraction

• Vertical Transport

- Mechanical lifting
- Hydraulic lifting
- Air Lift
- Positive Displacement
- Serial Centrifugal

Production capacity: 250 t/h
Minimal fluid velocity in riser (d_p=50mm): 3.6 m/s
Slurry solid content: 12 %
Average solid density: 2.5 t/m^3
Deep Sea Mining – Extraction

• Vertical Transport
Deep Sea Mining – Extraction

• Vertical Transport
Deep Sea Mining – Extraction

- Vessel Operations and Shipping
- Dewatering
- Concentrating
- Loading for Transportation to Port
Deep Sea Mining – Processing

• Current project assume to transport extracted material to port facility for processing

• Can we do better?

 • Commination, classification and separation on a vessel or sea bed

 • Eliminating zero waste material early in the process chain:

 • Sensor based ore/waste selection?
 • Pre-sorting on the seabed?
 • Concentrating on a ship?
Deep Sea Mining – Extraction

• Technology reflection

(1) It is technically feasible to perform deep sea mining
(2) All concepts are mainly concepts tested at an experimental scale
(3) Next step should be lead to prototyping actions and proof the concepts in real environment to understand challenges in system integration
(4) Potential future areas of improvement:
 (1) Continuous improvement of components
 (2) Ore/Waste selection at seabed
 (3) Pre-upgrading on seabed (e.g. sensor derived)
 (4) Seabed production and environmental monitoring
Land-based vs. Seabed Deposits

Seabed poly-metallic Sulphides

Only example: Solwara 1

Indicated Mineral Resource: 1,030kt @ 7.2% Cu, 5.0 g/t Au, 23 g/t Ag, 0.4 % Zn

Inferred Mineral Resource: 1,540kt @ 8.1 % Cu, 6.4 g/t Au, 34 g/t Ag, 0.9% Zn

Reference:
http://www.nautilusminerals.com
Land-based vs. Seabed Deposits

Copper Deposits (Porphyry Deposits)

Example Escondida Mine: copper-gold-silver

Annual Production: 1.1 million tonnes of copper (100 per cent basis)

Expected Life of Mine 54 years

Reference: bhpbilliton Annual Report 2013

<table>
<thead>
<tr>
<th>Commodity Deposit</th>
<th>Ore Type</th>
<th>Measured Resources</th>
<th>Indicated Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mt</td>
<td>%TCu</td>
</tr>
<tr>
<td>Copper</td>
<td>Oxide</td>
<td>112</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>Mixed</td>
<td>80</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>Sulphide</td>
<td>5,190</td>
<td>0.67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commodity Deposit</th>
<th>Ore Type</th>
<th>Proved Ore Reserves</th>
<th>Probable Ore Reserves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mt</td>
<td>%TCu</td>
</tr>
<tr>
<td>Copper</td>
<td>Oxide</td>
<td>84</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>Sulphide</td>
<td>3,760</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>Sulphide Leach</td>
<td>1,470</td>
<td>0.45</td>
</tr>
</tbody>
</table>
Land-based vs. Seabed Deposits

Land-based poly-metallic deposits
- Large in extension and tonnage (multiple 1.000 Mio t)
- Comparable low grade (e.g. 0.5-1.0% Cu)
- Production: order of magnitudes: 100 Mio. t/a ore + waste according to stripping ratio
- Efficient and set up for long-term (40 years +)

Seabed poly-metallic deposits
- Small in extension and tonnage (1 to 2 Mio t)
- Comparable high grade (about 7-8% Cu)
- Annual production: 1-2 Mio. t
- Current available seabed deposits would be set up for low production of a life of a mine of about 1 year

Currently known and in the context of raw material extraction evaluated seafloor deposits are not sufficient in size to compete against exploitation of land-based deposits.
Land-based vs. Seabed Deposits

Example: JORC Code, produced by the Australasian Joint Ore Reserves Committee (2012)
Deep Sea Mining – Economics

Cost Structure Seabed Mining from Literature: Example with documented numbers:

<table>
<thead>
<tr>
<th>Item</th>
<th>Capital expenditures</th>
<th>Operating expenditures</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mining system</td>
<td>$ 550 mi.* ($372-562 mi.)</td>
<td>$ 100 mi/y* ($96-99 mi.) x 20 years = $ 2.0 billion</td>
<td>$ 2.55 billion</td>
</tr>
<tr>
<td>Ore transfer</td>
<td>$ 600 mi.* ($495-600 mi.)</td>
<td>$ 150 mi/y* ($93-132 mi/yr) x 20 years = $ 3.0 billion</td>
<td>$ 3.60 billion</td>
</tr>
<tr>
<td>Processing plant</td>
<td>$ 750 mi.</td>
<td>($250 mi/y) x 20 years = $ 5.0 billion</td>
<td>$ 5.75 billion</td>
</tr>
<tr>
<td>Total</td>
<td>$ 1.90 billion</td>
<td>$ 10.0 billion</td>
<td>$ 11.90 billion</td>
</tr>
</tbody>
</table>

* Rounded off to nearest fifty of the highest value
() Values proposed by different Contractors (Source: ISA, 2008a)

This preliminary investigation reveals:

- **Cost/t:** Ratio between land-based deposits and seabed deposits is about 1:10
- **Value of the ore:** Ratio between land-based deposits and seabed deposits grades is about 10:1

Strategy for Seabed mining: early upgrading (post extraction upgrading)
Environmental Considerations

- loss of substrate on the sea floor
- effects of mining on the seabed, the operational plume and re-sedimentation and
- discharge plume and its effects on fauna depending on the depth of discharge
- Instruments:
 - Environmental Impact Assessment (EIA) and
 - Strategic Environmental Assessment (SEA)
Conclusions

• Deep sea mining is exciting

• Deep sea offers mineral resources

• For exploitation we need to know more!
 Resource discovery of sediment - covered deposits
 Environmental impacts

• Technology is conceptual ready

• Future: proof of concept and operational optimization in a test mining site or show case
Personal Opinion

• Is deep sea mining an economic viable option?

 Under current conditions and considering land based alternatives: **no**

• Potential resource for future generations

• In a sustainable sense:

 • Perform research to increase our knowledge about the deep sea environment

 • Maturation of technology, especially robotics

 • Leave it up to future generation to start exploitation deep sea resources in a responsible way, when resources are needed