European Maritime Safety Agency

Ordem dos Engenheiros - Descarbonização Transporte Marítimo

Department 1: Sustainability and Technical Assistance

30 MAIO 2023

INDEX

- 1 EMSA Activities and Strategy
- 2 Sustainability and Technical Assistance
 - Air emissions and THETIS-MRV Overview
- 3 Fit for 55 EU Strategy
 - EU-ETS
 - FuelEU
- 4 Complementary Studies

1 – EMSA Activities and Strategy

1.1 OVERVIEW OF THE 5-YEAR STRATEGY

Modern organisational management

efficient, stakeholder oriented, smart, transparent and gender balanced

1 – EMSA Activities

Dept. 1 - Sustainability & Technical Assistance

Dept. 3 - Digital Services & Simplification

Dept. 2 - Safety Security & Surveillance

EMSA

2 - Sustainability and Technical Assistance

Prevention of Pollution by Ships

- Air Emissions
 - GHG
 - Air Pollutants
- Protecting the Marine Environment
 - Oil Pollution Response
 - Underwater noise
 - Ballast water
 - Anti Fouling

- Sustainable Shipping
 - Alternative Sources of Power
 - New technologies
 - Ship Recycling
- Sustainable Ports
 - Port reception Facilities
 - LNG bunkering and OPS
 - Port Call Optimisation

Air Emissions

GHG (Greenhouse Gases) - CO₂ (Carbon Dioxide), CH₄ (Methane), N₂O (Nitrous Oxide), HFCs (Hydro Fluorocarbons), PFCs (Perfluorocarbons) and SF₆ (Sulphur Hexafluoride)

Other Relevant Substances - NO_x (Nitrogen Oxides), SO_x (Sulphur Oxides), NMVOC (Non-Methane Volatile Organic Compounds), CO (Carbon Monoxide) and PM (Particulate Matter, including Black Carbon).

CO₂ equivalent concept & GWP100

Long lived GHG > 100y CO_2 , N_2O Short lived GHG ~20y CH_4 , Aerosols Global Warming Potential of 100y 1 ton Methane, equivalent to 28t CO_{2eq}

1 ton Óxido Nitroso, equivalent to 265t CO_{2eq}

Air Emissions – THETIS-MRV overview

EU MRV

Vessels > 5000 GT 12,000 vessels 140 million tons CO2 (2018) 18% world shipping emissions

EU Global overview

13.5% EU transport emissions3-4% of EU GHG emissions

Emissões de gases com efeito de estufa em todos os setores dos transportes

/ EMSA

Source: 'EEA greenhouse gas — data viewer', European Environment Agency (https://www.eea.europa.eu/data-andmaps/data/ data-viewers/greenhouse-gases-viewer)

EU GHG Emissions from different transport industries

EU GHG emissions from transport by mode, including international bunkers, relative to 1990

Source: EEA (2020a).

* EMTER Report 2021

World trade and Maritime Transport demand

World merchandise trade volume (all trade)

Percentage global trade volume annual variation (Indices, 2015=100)

CO₂ emissions Forecast

Figure 2: Projections of maritime ship emissions as a percentage of 2008 emissions; Source: Fourth IMO GHG Study

* 4th Annual report from EC on CO2 emissions from Maritime Transportation (period 2018-2021)

CO₂ emissions per vessel type

Emissions distribuition per voyage type, and at port

EMSA

Source: EMSA/THETIS-MRV (2018).

THETIS-MRV (2018-2021)

AER – Annual Efficiency Ratio g CO₂ / (dwt . nm)

Figure 44: Plot of attained AER values of container ships over the four reporting years and according trend

* 4th Annual report from EC on CO2 emissions from Maritime Transportation (period 2018-2021)

THETIS-MRV (2018-2021)

Consumed fuel types / mix

Figure 13: 2018 to 2021 total fuel consumption of EU MRV fleet and shares per fuel type

* 4th Annual report from EC on CO2 emissions from Maritime Transportation (period 2018-2021)

3 – Fit for 55 EU Strategy (2022)

EMSA

Fit for 55

- **RED** Renewable Energy Directive
- AFIR Alternative Fuels Infrastructure (Onshore power supply + bunkering)

Specific regulation to the maritime industry

• EU ETS – MRV

Carbon Emission Trading System

• FuelEU

EMSA

Recap - THETIS-MRV (2018-2023)

- Ships > 5000 GT, calling EEA ports
- International voyages from and to EEA ports, and intra-EU
- Monitoring Plan / Emission Report (CO₂ only) / Verification and DoC

EU-ETS MRV (New on 01-01-2024)*

- Application of EU ETS 2003/87/EC, to the maritime transport
- Phase-in 2024 (40%), 2025 (70%), after 2026, to consider 100% emissions
- Process*: Monitoring Plan, Ship Emission Report, Company Emission Report, Verification Procedure, ETS allowance surrendering
- Administration of shipping companies by a specific "Administering Authority", (assigned MS). Criteria*: first the country of registration of the shipping company, second the n° of port calls for non-EU companies, third the 1st time.

EU-ETS MRV (1-01-2024)*

Scope:

- Cargo and passenger ships > 5000 GT, calling EEA ports
- 100% of emissions, intra-EEA ports, and emissions at berth
- 50% of emissions, international voyages from and to EEA ports
- GHG emissions:
 - CO_2 , + methane CH_4 , nitrous oxide N_2O
- After 2025, cargo ships 400 < GT < 5000, and offshore vessels > 400GT*
- Emissions based on *Tank to Wake* principle
- Transhipment Ports: > 300 nm from EEA port

Exemptions and derogations:

• Small islands, outermost regions, public service, ice class

EU-ETS MRV*

Calculations : base concept CO_{2eq} (to include CO_2 and CH_4 , N_2O)

GHG = Tonnes of Fuel x **Emission Factor** + C_{slip} (considering Gas slip)

 $GHG_{MRV} = CO_{2_{MRV}} + CH_{4_{MRV}} \times GWP_{CH_4} + N_2O_{MRV} \times GWP_{N_2O}$

$$CO_{2_{MRV}} = \sum_{i} (M_{i} - M_{i,NC}) \times EF_{CO_{2},i}$$
$$CH_{4_{MRV}} = \left[\sum_{i} (M_{i} - M_{i,NC}) \times EF_{CH_{4},i}\right] + CH_{4_{S}}$$

$$N_2 O_{MRV} = \sum_i (M_i - M_{i,NC}) \times EF_{N_2 O,i}$$

1	2	3	4	5	6	
Fuel Class	Fuel Class Type of Fuel		$\frac{EF_{CH_4}}{\left[\frac{gCH_4}{gFuel}\right]}$	$\frac{EF_{N_2O}}{\left[\frac{gN_2O}{gFuel}\right]}$	<i>C_j</i> As % of the mass of the fuel used by the emissions source	
	HFO ISO 8217 Grades RME to RMK	3,114	0,00005	0,00018	-	

*Under development

EU-ETS MRV

Process *

*Under development , secondary legislation

EMSA

EU ETS-MRV

Relevant Timeline *

- Monitoring Plan (MP) and submission to Verifier
- Publication of Administering Authorities (AA)
- Submission the assessed MP to AA
- 1st Recording Period
- Ship Specific Emission Report (ER)
- Aggregated Company Report at Company level
- Submission to AA, the verified Aggregated ER
- Surrendering of Allowances

20

Complement ETS-MRV

- **ETS** promotes energy efficiency and fuel reduction by carbon price measures
- FuelEU promotes new fuel technologies, renewables and low carbon

Complements RED e AFIR

- **FuelEU** is promoting the demand for marine renewable fuels
- **RED** defines the supply of new fuels
- **AFIR** promotes the development of infrastructures to supply new fuel technologies

/ EMSA

FuelEU (1-Jan-2025)

Scope:

- Cargo and passenger ships > 5000 GT, calling EEA ports
- 100% of emissions, intra-EEA traffic, and emissions at berth
- 50% of emissions, international voyages from and to EEA ports
- GHG intensity of energy :
 - CO2 ,+ methane CH4 ,Nitrous oxide N₂O, based on <u>Well to Wake</u>

- Establishes limits on the annual GHG intensity of the energy used.
 - Reference Value: 91.16 g CO_{2eq} / MJ

FuelEU

Targets

- Progressive reduction of GHG intensity limit, to be reviewed every 5 years
- Zero emissions on port, or Onshore Power Supply, at AFIR after 2030 (TEN-T Ports)

Calculation (base concept):

GHG intensity index	WtT	TtW
GHG intensity index [gcozeg] =	$\frac{\sum_{i}^{nfuel} M_{i} \times CO_{2eqWtT,i} \times LCV_{i} + \sum_{k}^{e} E_{k} \times CO_{2eqelectricity,k}}{\sum_{i}^{nfuel} M_{i} \times LCV_{i} + \sum_{k}^{e} E_{k}}$	$+\frac{\sum_{i}^{nfuel}\sum_{j}^{mengine}M_{i,j}\times\left[\left(1-\frac{1}{100}C_{engineslipj}\right)\times\left(CO_{2eq,TtW,j}\right)+\left(\frac{1}{100}C_{engineslipj}\times CO_{2eqTtW,slippage,j}\right)\right]}{\sum_{i}^{nfuel}M_{i}\times LCV_{i}+\sum_{k}^{l}E_{k}}$

*Under development, secondary legislation

FuelEU

Relevant Timeline *

•	Monitoring Plan and submission to Verifier	31-08-2024
•	1 st Recording Period	y 2025
•	Ship specific FuelEU report	30-01-2026
•	Company emission report	30-03-2026
•	Verification report	30-04-2026
•	Non compliance penalty	01-05-2026
•	Issue FuelEU DoC	30-06-2026

EMSA

4 – Complementary Studies

4 - Complementary Studies

DNV.GL **European Maritime Transport Environmental Report 2021** MARITIME STUDY ON THE USE OF FUEL CELLS IN SHIPPING EMSA European Maritime Safety Agency SAFER, SMALTER, GREENER Verson 0.1

EMSA

4 - Complementary Studies

Other studies under evaluation/progress :

- EMTER 2.0
- Hydrogen fuel solutions
- Wind assisted power

Obrigado.

twitter.com/emsa_lisbon
facebook.com/emsa.lisbon

